
Note: In this problem set, expressions in green cells match corresponding expressions in the
text answers.

General comment. I avoided the named methods such as Simpson’s, because they seemed
merely quaint. I think that in terms of accuracy of presentation, it is not that hard to get
Mathematica on the case.
Clear["Global`*⋆"]

1 - 6 Rectangular and trapezoidal rules

1. Rectangular rule. Evaluate the integral in example 1 by the rectangular rule (1) with
subintervals of length 0.1. Compare with example 1. (6S-exact: 0.746824).

Clear["Global`*⋆"]

NIntegrateⅇ-−x2, {x, 0, 1}

0.746824

Mathematica does not have a method for rectangular integration. The text answer implied
the green above was an expected, accurate, or noteworthy result.

3. Trapezoidal rule. To get a feel for increase in accuracy, integrate x2 from 0 to 1 by (2)
with h=1, 0.5, 0.25, 0.1.

Clear["Global`*⋆"]

NIntegratex2, {x, 0, 1}, {3, 3}

0.33

The above cell deliberately restricts the default accuracy and precision, just to show there is
an effect from changing the numbers inside the curlies.

NIntegratex2, {x, 0, 1}, Method -−> "Trapezoidal"

0.333333

NIntegratex2, {x, 0, 1}, AccuracyGoal → 16,

MaxRecursion → 500, WorkingPrecision → 10

0.3333333333

4. Error estimation by halfing. Integrate f[x]=x4 from 0 to 1 by (2) with h = 1, h = 0.5, h =
0.25, and estimate the error for h = 0.5 and h = 0.25 by (5).

5. Error estimation. Do the tasks in problem 4 for f[x]=Sin[12 π x].

Clear["Global`*⋆"]

NIntegrateSin
1

2
π x, {x, 0, 1}

0.63662

NIntegrateSin
1

2
π x, {x, 0, 1}, AccuracyGoal → 16,

MaxRecursion → 500, WorkingPrecision → 10

0.6366197724

Symbolab agrees with the answer, as far as it carries it. I can check this particular integral
by hand.

IntegrateSin
1

2
π x, x

top = N-−
2 Cos π x

2


π
, 16 /∕. x → 1

0. × 10-−16

The format below is intended to require 16-digit accuracy with any precision.

bot = N-−
2 Cos π x

2


π
, {∞, 16} /∕. x → 0

-−0.636619772367581

None of several tweaks I tried in this problem caused any change in the answer produced
by Mathematica.

7 - 15 Simpson’s rule

Evaluate the integrals A = Integrate[1x ,{x,1,2}] B=Integrate[x ⅇ-−x2 ,{x,0,0.4}] J=Inte-

grate[1
1+x2 , {x,0,1}] by Simpson’s rule as indicated, and compare with the exact value

known from calculus.

7. A, 2m = 4

Integrate
1

x
, x

Log[x]

top = N[Log[2], {∞, 16}]

0.693147180559945

2 19.5 Numeric Integration and Differentiation 827.nb

bot = N[Log[1], {∞, 16}]

0. × 10-−16

Symbolab agrees with the answer, as far as it carries it. As a check,

ⅇ0.69314718055994530937448036556070007919`15.84082546104514

2.000000000000000

9. B, 2m = 4

rin = NIntegratex ⅇ-−x2 , {x, 0.0, 0.4}, {10, 16}

0.0739281

rinn = NIntegratex ⅇ-−x2 , {x, 0.0, 0.4}, AccuracyGoal -−> 16

0.0739281

Symbolab agrees with the answer, as far as it carries it.

11. J, 2m = 4

NIntegrate
1

1 + x2
, {x, 0, 1}, AccuracyGoal -−> 16

0.785398

NIntegrate
1

1 + x2
, {x, 0, 1}, {10, 16}

0.7853981634

Symbolab agrees with the answer, as far as it carries it.

13. Error estimate. Compute the integral J by Simpson’s rule with 2 m=8 and use the
value and that in problem 11 to estimate the error by (10).

Clear["Global`*⋆"]

Here I have made an effort to address estimated error, using material from the Mathemat-
ica documentation, tutorial/NIntegrateIntegrationStrategies#285388386, located at about 55%
down the scroll. Some things I noticed. Both TrapStep modules are necessary. The improve-
ment (decrease) in estimated local error occurs through adjustment of the MaxRecursion
variable in the second module, which started at 7 with a fairly large estimated error on the
integral. Increasing the value of MaxRecursion allows the variable tol_ to be decreased
without triggering error messages, and the discovered error can go down. The calculation
time goes up quite a bit with the increase in MaxRecursion, so it’s best to start low.

19.5 Numeric Integration and Differentiation 827.nb 3

TrapStep[f_, {a_, b_}, n_?IntegerQ] :=
Module{h, absc, is},

h =
b -− a

n -− 1
;

absc = Table[i, {i, a, b, h}];
is = h *⋆ Total[MapAt[# /∕ 2 &, f /∕@ absc, {{1}, {-−1}}]];
{is, ∞, n}

;

TrapStep[f_, {a_, b_}, {oldEstimate_, oldError_, oldn_}] :=
Module{n, h, absc, is},
n = 2 oldn -− 1;

h =
b -− a

n -− 1
;

absc = Table[i, {i, a + h, b -− h, 2 h}];
is = h *⋆ Total[f /∕@ absc] + oldEstimate  2;
{is, Abs[is -− oldEstimate], n}

;

Options[TrapezoidalIntegration] = {"MaxRecursion" → 20};
TrapezoidalIntegration[f_, {a_, b_}, tol_, opts___] :=
Block[{maxrec, k = 0, temp},
maxrec = "MaxRecursion" /∕. {opts} /∕. Options[TrapezoidalIntegration];
NestWhile[((temp = TrapStep[f, {a, b}, #]) && k++ < maxrec) &,

TrapStep[f, {a, b}, 5], #[[2]] > tol &][[1]];
temp[[1]]

]

f[x_] :=
1

1 + x2

(*⋆ test function inluded with the tutorial: f[x_]:=
1
π
Cos[80 Sin[x]-− x]*⋆)

res = TrapezoidalIntegrationf, {0, 1}, 10-−12 /∕/∕ N

0.785398

NumberForm[%, {10, 10}]

0.7853981634

The number produced above agrees with the answer in problem 11.
exact = Integrate[f[x], {x, 0, 1}]
π

4

4 19.5 Numeric Integration and Differentiation 827.nb

Abs[res -− exact] /∕ exact

1.92954 × 10-−13

The above checks Mathematica's accuracy in a different way than in problem 11, but no
discrepancy is noted.

15. Given TOL. Find the smallest n in computing A (see problems 7 and 8) such that 5S-
accuracy is guaranteed (a) by (4) in the use of (2), (b) by (9) in the use of (7).

If I do not clear variables, I can just continue using the error estimate modules from the
previous problem.

g[x_] :=
1

x

res = TrapezoidalIntegrationg, {1, 2}, 10-−5 /∕/∕ N

0.693148

NumberForm[%, {5, 5}]

0.69315

exact = Integrate[g[x], {x, 1, 2}]

Log[2]

Abs[res -− exact] /∕ exact

3.35904 × 10-−10

Yellow is the form with 5 significant digits. Altering the problem to suit the chosen algo-
rithm, the equivalent question for this problem concerns the maximum possible requested
level for the tol_ variable needed in order to guarantee 5S, and here it is found to be 10-−5. I
see that even though “MaxRecursion” was not altered from the previous problem, the calcu-
lation speed increases dramatically with increase of the tol_ variable.

16 - 21 Nonelementary integrals
The following integrals cannot be evaluated by the usual methods of calculus. Evaluate
them as indicated. Compare your value with that possibly given by your CAS. Si [x] is the
sine integral. S[x] and C[x] are the Fresnel integrals. See appendix A3.1. They occur in
optics.

Si[x] = Integrate
Sin[x%]

x%
, {x, 0, x}

S[x] = IntegrateSinx%2, {x, 0, x}

C[x] = IntegrateCosx%2, {x, 0, x}

17. Si[1] by (7), 2 m = 2, 2 m = 4

19.5 Numeric Integration and Differentiation 827.nb 5

17. Si[1] by (7), 2 m = 2, 2 m = 4

NIntegrate
Sin[x:]

x:
, {x, 0, 1}, {10, 16}

0.9460830704

19. Si[1] by (7), 2 m = 10

NIntegrate
Sin[x:]

x:
, {x, 0, 1}, {7, 16}

0.9460831

21. C[1.25] by numbered line (7), p. 832, 2 m = 10

NIntegrateCosx:2 , {x, 0, 1.25}, PrecisionGoal → 14, AccuracyGoal → 16

0.977438

NIntegrateCosx:2 , {x, 0.0, 1.25}, {10, 16}

0.977438

NumberForm[%, {7, 7}]

0.9774377

22 - 25 Gauss integration
Integrate by numbered line (11), p. 837, with n = 5:

23. x ⅇ-−x from 0 to 1

NIntegratex ⅇ-−x , {x, 0.0, 1.}, {10, 10}

0.264241

NumberForm[%, {10, 10}]

0.2642411177

The number matches the text answer for 10S.

25. Exp[-−x2] from 0 to 1

NIntegrateExp-−x2, {x, 0.0, 1.0}, {9, 9}

0.746824

6 19.5 Numeric Integration and Differentiation 827.nb

NumberForm[%, {9, 9}]

0.746824133

The number in the above cell matches the text answer for 9S.

27 - 30 Differentiation

27. Consider f[x] = x4 for x0 = 0, x1 = 0.2, x2 = 0.4, x3 = 0.6, x4 = 0.8. Calculate f2 '
from (14a), (14b), (14c), (15). Determine the errors. Compare and comment.

I’m going to skip the intended mechanics of the problem. I make a table of the expected
values of the problem for reference.
f[x_] = x4

x4

Table[f'[x], {x, 0, 0.8, 0.2}]

{0., 0.032, 0.256, 0.864, 2.048}

There are various ways to get an approximate derivative by numerical means, and I look at
three here.

1. ND

I see in reviewing some aspects of numerical differentiation that Mathematica has a built-in
function for it, called ND. An extra package, not loaded by default, needs to be available to
use what I might refer to as NumericalDerivative.
Needs["NumericalCalculus`"]

I use ND with a sample value, receiving back the expected result. The Scale parameter is
used “to capture the region of variation”, according to the documentation. With some func-
tions such as sine, Scale can be set to zero, but with the current function it must be
nonzero.
ND[f[x], x, 0.4, Scale → 0.0001, WorkingPrecision → 20]

0.256

NumberForm[%, {10, 10}]

0.2560000000

2. Definition

According to Wolfram MathWorld, the derivative definition is sometimes used for obtaining
the numerical derivative, and that’s what I do here.

19.5 Numeric Integration and Differentiation 827.nb 7

fp[x_, h_] =
f[x + h] -− f[x]

h
-−x4 + (h + x)4

h

fp[0.4, 0.0001]

0.256096

The above looks useful. Additionally, I might want to look at a grid of the derivative values
made using the problem’s sample points juxtaposed against a list of function values using
common values of h.

GridTableTable4 x3, fp[x, h], {x, 0, 0.8, 0.2},

{h, 0.0001, 0.001, 0.0001}, Frame → All

0.,

1. × 10-−12

{0.032,
0.032024}

{0.256,
0.256096}

{0.864,
0.864216}

{2.048,
2.04838}

0.,

8. × 10-−12

{0.032,
0.032048}

{0.256,
0.256192}

{0.864,
0.864432}

{2.048,
2.04877}

0.,

2.7 × 10-−11

{0.032,
0.0320721}

{0.256,
0.256288}

{0.864,
0.864648}

{2.048,
2.04915}

0.,

6.4 × 10-−11

{0.032,
0.0320961}

{0.256,
0.256384}

{0.864,
0.864864}

{2.048,
2.04954}

0.,

1.25 × 10-−10

{0.032,
0.0321202}

{0.256,
0.25648}

{0.864,
0.865081}

{2.048,
2.04992}

0.,

2.16 × 10-−10

{0.032,
0.0321443}

{0.256,
0.256577}

{0.864,
0.865297}

{2.048,
2.05031}

0.,

3.43 × 10-−10

{0.032,
0.0321684}

{0.256,
0.256673}

{0.864,
0.865513}

{2.048,
2.05069}

0.,

5.12 × 10-−10

{0.032,
0.0321925}

{0.256,
0.256769}

{0.864,
0.86573}

{2.048,
2.05107}

0.,

7.29 × 10-−10

{0.032,
0.0322166}

{0.256,
0.256865}

{0.864,
0.865946}

{2.048,
2.05146}

0., 1. × 10-−9 {0.032,
0.0322408}

{0.256,
0.256962}

{0.864,
0.866162}

{2.048,
2.05184}

3. DifferenceDelta

Mathematica has a built-in function called DifferenceDelta that contains the functional-
ity of the derivative definition. It goes like

8 19.5 Numeric Integration and Differentiation 827.nb

1

h
DifferenceDelta[f[x], {x, 1, h}]

-−f[x] + f[h + x]

h

or for the problem function
1

h
DifferenceDeltax4, {x, 1, h}

h4 + 4 h3 x + 6 h2 x2 + 4 h x3

h

and for the sample point already looked at
% /∕. {x → 0.4, h → 0.000001}

0.256001

It seems interesting that with ND, at Scale→0.0001, the answer already equals the exact,
whereas with DifferenceDelta, at h→0.000001, there is still a little tail. Does this mean
that DifferenceDelta is more exact, or that ND is more efficient?

29. The derivative f '[x] can also be approximated in terms of first-order and higher order
differences (see section 19.3):

f'[x0] ≈
1

h
Δf0 -−

1

2
Δ2 f0 +

1

3
Δ2 f0 -−

1

4
Δ f0 + -−

Compute f '[0.4] in problem 27 from this formula, using differences up to and including
first order, second order, third order, fourth order.

I think this problem has been sufficiently covered in the discussion of the last problem.

19.5 Numeric Integration and Differentiation 827.nb 9

